Post hoc Bayesian model selection

نویسندگان

  • Karl J. Friston
  • William D. Penny
چکیده

This note describes a Bayesian model selection or optimization procedure for post hoc inferences about reduced versions of a full model. The scheme provides the evidence (marginal likelihood) for any reduced model as a function of the posterior density over the parameters of the full model. It rests upon specifying models through priors on their parameters, under the assumption that the likelihood remains the same for all models considered. This provides a quick and efficient scheme for scoring arbitrarily large numbers of models, after inverting a single (full) model. In turn, this enables the selection among discrete models that are distinguished by the presence or absence of free parameters, where free parameters are effectively removed from the model using very precise shrinkage priors. An alternative application of this post hoc model selection considers continuous model spaces, defined in terms of hyperparameters (sufficient statistics) of the prior density over model parameters. In this instance, the prior (model) can be optimized with respect to its evidence. The expressions for model evidence become remarkably simple under the Laplace (Gaussian) approximation to the posterior density. Special cases of this scheme include Savage-Dickey density ratio tests for reduced models and automatic relevance determination in model optimization. We illustrate the approach using general linear models and a more complicated nonlinear state-space model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Author's Personal Copy Post Hoc Bayesian Model Selection

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o Keywords: Bayesian model evidence Model selection Automatic relevance determination Sa...

متن کامل

Bayesian variable selection for latent class analysis using a collapsed Gibbs sampler

Latent class analysis is used to perform model based clustering formultivariate categorical responses. Selection of the variables most relevant for clustering is an important task which can affect the quality of clustering considerably. This work considers a Bayesian approach for selecting the number of clusters and the best clustering variables. The main idea is to reformulate the problem of g...

متن کامل

Project Portfolio Risk Response Selection Using Bayesian Belief Networks

Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...

متن کامل

Bayesian Q 2 statistical approaches to evaluate cognitive models

Cognitive models aim to explain complex human behavior in terms of hypothesized mechanisms of the mind. These mechanisms can be formalized in terms of mathematical structures containing parameters that are theoretically meaningful. For example, in the case of perceptual decision making, model parameters might correspond to theoretical constructs like response bias, evidence quality, response ca...

متن کامل

یک مدل بیزی برای استخراج باناظر گرامر زبان طبیعی

In this paper, we show that the problem of grammar induction could be modeled as a combination of several model selection problems. We use the infinite generalization of a Bayesian model of cognition to solve each model selection problem in our grammar induction model. This Bayesian model is capable of solving model selection problems, consistent with human cognition. We also show that using th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2011